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Artificial intelligence outperforms 
standard blood‑based scores 
in identifying liver fibrosis patients 
in primary care
Victoria Blanes‑Vidal1,2,5*, Katrine P. Lindvig3,4,5, Maja Thiele3,4, Esmaeil S. Nadimi1,2 & 
Aleksander Krag3,4

For years, hepatologists have been seeking non-invasive methods able to detect significant liver 
fibrosis. However, no previous algorithm using routine blood markers has proven to be clinically 
appropriate in primary care. We present a novel approach based on artificial intelligence, able to 
predict significant liver fibrosis in low-prevalence populations using routinely available patient data. 
We built six ensemble learning models (LiverAID) with different complexities using a prospective 
screening cohort of 3352 asymptomatic subjects. 463 patients were at a significant risk that 
justified performing a liver biopsy. Using an unseen hold-out dataset, we conducted a head-to-head 
comparison with conventional methods: standard blood-based indices (FIB-4, Forns and APRI) and 
transient elastography (TE). LiverAID models appropriately identified patients with significant liver 
stiffness (> 8 kPa) (AUC of 0.86, 0.89, 0.91, 0.92, 0.92 and 0.94, and NPV ≥ 0.98), and had a significantly 
superior discriminative ability (p < 0.01) than conventional blood-based indices (AUC = 0.60–0.76). 
Compared to TE, LiverAID models showed a good ability to rule out significant biopsy-assessed 
fibrosis stages. Given the ready availability of the required data and the relatively high performance, 
our artificial intelligence-based models are valuable screening tools that could be used clinically for 
early identification of patients with asymptomatic chronic liver diseases in primary care.
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METS	� Metabolic syndrome
AUC​	� Area under the curve
RRS	� Random subsampling
SMOTE	� Synthetic minority over-sampling technique
ROC	� Receiver operating characteristic curve

The prevalence of fatty liver disease is increasing at the same rate as the epidemics of obesity and type 2 diabetes 
mellitus1. As the condition develops, inflammation and fibrosis of the liver appear and can progress to cirrhosis 
with associated morbidity and mortality. Early identification of asymptomatic patients can prevent that unde-
tected liver fibrosis slowly and asymptomatically progresses to a severe and life-threatening chronic liver disease. 
Various tools for the non-invasive assessment of fibrosis have been developed in the last decades. They fall into 
three categories, 1) image-based technologies e.g. Transient Elastography (TE), that measures liver stiffness, 2) 
indirect markers e.g. Fibrosis 4 index (FIB-4), and 3) direct markers of fibrosis e.g. Enhanced Liver Fibrosis test 
(ELF). One of the main advantages of the indirect blood-based biomarkers and scores is that they can be used in 
evaluating liver fibrosis in most clinical settings, since they are very easy-to-use, quick and inexpensive. While 
these tools were originally developed, largely fueled by the hepatitis-C era, to diagnose significant fibrosis up-to 
compensated advanced chronic liver disease, they have primarily been validated in secondary and tertiary health-
care. Identifying those with significant liver fibrosis in primary care is a clinical challenge as the vast majority 
are asymptomatic and often have normal liver function tests. To date no tools have been developed and only few 
assessed or validated for a primary care population.

Up to now, algorithms based on indirect blood markers, have been typically developed using approaches 
that are standard in the epidemiological literature, such as parametric regression methods where the optimal 
set of predictors is identified by stepwise selection2–5. With the advent of computer systems and digitalization, 
large amount of healthcare data is routinely being collected and stored; but these data are frequently underused 
and undervalued. Artificial intelligence (AI) could help to improve the accuracy with which we can detect liver 
fibrosis by processing and automatically learning associations in this complex healthcare data. Among the dif-
ferent AI techniques, the use of ensemble learning is of particular interest, because it trains multiple machine 
learning algorithms, determines the optimal weights for combining the predictions, and results in an ensemble 
model that often outperforms any single machine learning algorithm. Despite the potential benefits, no studies 
have explored the use of ensemble learning methodology to identify significant liver fibrosis.

In this study, we developed a set of AI algorithms with different complexities, based on ensemble learning 
methodology, able to predict clinically significant liver stiffness (a well-established surrogate of biopsy-assessed 
liver fibrosis), using patient data that can be available at a low cost in primary care. We assessed their diagnostic 
performance, and conducted a head-to-head comparison with standard indirect indices (FIB-4, Forns index 
(Forns) and AST to platelet ratio index (APRI)). We then evaluated the ability of the ensemble learning models 
to effectively reduce the number of patients that undergo unnecessary TE investigations. Finally, we addressed 
the question as to whether a negative ensemble learning model result, calculated based on affordable patient 
data, could be used with confidence to rule out significant biopsy-assessed fibrosis, and so its potential role in 
eliminating unnecessary liver biopsies.

Methods
Study population.  We performed a prospective cohort study including patients from the Region of South-
ern Denmark between 2013 and 2020. The study population (n = 3460) consisted of subjects at risk of NAFLD 
(~ 43% of the participants), subjects at risk of alcohol-related liver disease (ALD) (~ 35%), and subjects ran-
domly selected from the general population (~ 22%). We recruited subjects via three main channels: 1) invita-
tion letters sent to randomly selected Danes, from the Odense University Hospital’s catchment area by means 
of e-boks. E-boks is the official digital communication route between public authorities and Danish citizens; 2) 
from three alcohol rehabilitation centers; and 3) from in- and out-patients at the department of Gastroenterol-
ogy and Hepatology at the Odense University Hospital of Southern Denmark. The non-participation rate was 
approximately 77% among subjects approached using channel 1 (i.e. general population), and 35% among sub-
jects approached via channel 2 and 3.

At recruitment, none of the subjects had known liver diseases, and they were asymptomatic. We have pub-
lished detailed study methods elsewhere6,7. All methods were carried out in accordance with relevant ethical 
guidelines and regulations based on the Declaration of Helsinki. We obtained informed consent in writing from 
each patient. The ethics committee in the Region of Southern Denmark (S-20120071; S-20170087) approved 
the study.

Input and output variables.  We collected data on demographics, physical exam, clinical and laboratory 
parameters, and questionnaires, alongside comorbidities and medications, resulting in 233 potential input vari-
ables (Appendix). Liver stiffness measurement (LSM) assessed by TE using FibroScan, was dichotomized using 
an 8 kPa threshold according to the definition of clinically significant fibrosis8,9.

The objective was to build a model that, when applied to undiagnosed patients that are new to the model 
(unseen data), correctly classifies them into two classes: patients whose liver stiffness is expected to be > 8 kPa (i.e. 
“clinically significant LSM”) and patients with expected liver stiffness ≤ 8 kPa (i.e. “not clinically significant LSM”).

Our model should ideally strike a balance between model complexity and performance. Therefore, we built 
six different ensemble learning models (LiverAID models), of increasing complexity, in terms of the number of 
input variables required by the model (Fig. 1). LiverAID XXS relies exclusively on the 9 indirect blood-based 
biomarkers used in the calculation of standard indices (FIB-4, Forns, APRI and LiverTrail)2–4,6. (Fig. 1). LiverAID 
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XS uses as inputs the 4 clinical variables and 6 indirect blood-based markers proposed in Thiele et al.6. Models 
LiverAID S, M and L, use as inputs the same 8 clinical variables (i.e. gender, age, weight, alcohol consumption 
in the last 3 months, BMI, metabolic syndrome (METS) points, diabetes and mid-upper arm circumference), 
but they differ in which blood biomarkers are additionally included as inputs: LiverAID S includes the 5 serum 
markers used in FIB-4, Forns and APRI indexes2–4; LiverAID M includes the 9 serum markers used in FIB-4, 
Forns, APRI and LiverTrail2–4,6; while LiverAID L includes 27 routine blood markers (Fig. 1). Finally, LiverAID 
4XL, uses as inputs all 233 available variables, i.e. the same 27 routine blood markers used in LiverAID L, plus a 
comprehensive set of 206 demographic and clinical variables (Appendix).

The ensemble learning models.  We generated high-performance classifiers following an ensemble learn-
ing strategy10. Based on De Lell et al.11, each of our proposed ensemble learning models were built to combine 
and optimize the output from four basic learning algorithms (random forest, elastic net, bagging classification 
tress and support vector machine) (Appendix).

With a view to reliably assessing the generalization error, we performed a series of data splits (Fig. 2). We 
randomly extracted a subset (10%) of the data (hold-out dataset), which was not used in any way for training, 
validation or testing. This unseen data was exclusively reserved to perform the final assessment of the model’s 
predictive performance. We applied a repeated random subsampling (RRS) strategy in which the remaining 
dataset was repeatedly and randomly split (resulting in 5 repetitions) into training (60%), validation (20%) and 
testing (20%). Synthetic samples were generated, only in the training dataset, to compensate for class imbalance. 
The optimal values for the hyperparameters of each model were obtained using the training dataset (Fig. 2). The 
validation datasets were then used to optimize the probability threshold value that resulted in an NPV ≥ 98%, 
while the testing datasets were used for a preliminary estimation of the generalization error. Finally, the predic-
tive performance of each model was evaluated on the completely unseen hold-out dataset.

The ability of standard indices of liver fibrosis (APRI, FIB-4 or Forns index) to predict significant liver stiff-
ness (i.e. LSM ≤ 8 kPa vs. LSM > 8 kPa) was evaluated by four logistic regressions models built using the same 
training datasets as in the LiverAID models: Three univariate models, using respectively, APRI, FIB-4 or Forns 
index as predictors; and one multivariate model with all three indices as predictors. We used the hold-out dataset 
to perform a head-to-head comparison of the predictive performance of each LiverAID model and that of the 
logistic regression models. We conducted all analyses in R.

Liver biopsy.  A portion of the study population was at a significant risk of liver disease that justified perform-
ing a liver biopsy6,7. We performed a percutaneous liver biopsy to these patients6,7, and obtained the liver fibrosis 
Kleiner stage (F0 to F4). We further evaluated the ability of: 1) LSM; 2) APRI, FIB-4 and Forns approaches, 

Figure 1.   Patients demographic information, clinical data and indirect serum markers used as input parameters 
in each of the LiverAID models.
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and 3) LiverAID models; to rule out significant liver fibrosis (defined as F2-F4 kleiner stages) in the hold-out 
dataset, using biopsy-assessed fibrosis stage as the reference standard. In this evaluation we mapped liver stiff-
ness ≤ 8 kPa, to liver biopsy stage F0 and F1; and liver stiffness > 8 kPa to liver biopsy stage F2 to F4, where liver 
stiffness was measured in case (1) and predicted in cases (2) and (3).

Ethics committee approval.  The ethics committee in the Region of Southern Denmark (S-20120071; 
S-20170087) approved the study.

Results
Study population.  Subject demographics, LSM results, biopsy-assessed fibrosis stage and serum markers 
measurements are presented in Table 1.

Area Under the Curve (AUC) of the Receiver Operating Characteristic curve (ROC) of LiverAID 
models predicting significant liver stiffness (LSM > 8 kPa) in training, validation, testing and 
hold‑out datasets.  The AUC in the training set was, for all models, equal to 1.00. When tested on the 
validation, testing and hold-out datasets, the LiverAID models subsequently achieved an AUC of 0.86, 0.87 and 
0.86 (XXS), 0.88, 0.88 and 0.89 (XS), 0.89, 0.90 and 0.91 (S), 0.91, 0.91 and 0.92 (M), 0.91, 0.90 and 0.92 (L) and 
0.93, 0.93 and 0.94 (4XL), respectively (Appendix). For each model (XXS to 4XL), the discriminatory power of 
the models built from each of the different training subset data was comparable, with minimal variability in AUC 
values between repetitions (Appendix).

Head‑to‑head comparison of LiverAID models vs standard blood‑based indices in predicting 
significant liver stiffness (LSM > 8 kPa).  The accuracy, sensitivity, specificity, PPV and NPV of using: 1) 
a cut-off approach for standard blood-based indices, 2) logistic regression models with standard blood-indices 
as predictors, and 3) ensemble learning models, is shown in Table 2. In the first approach, low cut-off values (i.e. 
used to rule out the presence of significant fibrosis) of FIB-4 = 1.253, Forns = 4.12 and APRI = 0.5 4, were used, 
which resulted in 9, 27 and 10 missed diagnosis (patients with significant LSM) for every 100 patients with 
FIB-4 < 1.25, Forns < 4.1 or APRI < 0.5, respectively. In the second and third approach, probability thresholds for 
each model were optimized in the validation dataset and then directly applied to the hold-out data set to evaluate 
model’s performance. Our goal was, in all logistic and LiverAID models, to determine probability cut-off values 
that result in NPV ≥ 0.98 in the validation dataset (i.e. ≤ 2 patients with missed diagnoses for every 100 patients 
with a negative test result). However, logistic regression models could not achieve this targeted NPV, and in these 
cases, thresholds were chosen to obtain the maximum possible NPV. This resulted in a NPV of logistic models in 
the hold-out dataset of 0.91, 0.88, 0.91 and 0.92, and PPV of 0.31, 0.57, 0.36 and 0.33, when using as predictors 

Figure 2.   Data splitting including repeated random subsampling approach and final evaluation in the hold-out 
dataset.
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FIB-4, Forns, APRI, and FIB4 + Forns + APRI, respectively (Table 2). On the contrary, in the case of LiverAID 
models, it was possible to achieve NPV ≥ 0.98 in the validation dataset. In the hold-out dataset, the NPV of all 
LiverAID models remained ≥ 0.98, and the PPV was 0.22, 0.24, 0.30, 0.31, 0.31 and 0.35 (for LiverAID XXS, XS, 

Table 1.   – Subjects characteristics. All summary data are medians ± interquartile range or counts (%). 
1 LSM = Liver stiffness measurement (median of 10 valid transient elastography measurements). 2 Number 
of subjects whose LSM is > 8 kPa (corresponding to “significant liver stiffness”) and subjects whose LSM 
is ≤ 8 kPa (corresponding to “not significant liver stiffness”). ALB, Albumin; ALP, Alkaline phosphatase; GGT, 
Gamma-Glutamyltransferase; INR, International Normalised Ratio; ALT, Alanine aminotransferase; AST, 
Aspartate aminotransferase; CRP, C-reactive protein; GLC, Fasting glucose; GLCmean, Mean glucose calculated 
from HbA1C; Hb, Hemoglobine; HbA1c, Hemoglobin A1c; HDL, HDL cholesterol; MCV, Mean corpuscular 
volume; MELD, Model of End-stage Liver Disease. A total of 3352 patients had a valid liver stiffness 
measurement and 463 patients also underwent a liver biopsy investigation. All demographic and serum 
variables included in the analysis had ≤ 15% missing values. Missing values in these variables were handled by 
creating imputations (replacement values) for these multivariate missing data.

Characteristic Units or levels Summary data (n = 3460)

Liver stiffness

LSM1 kPa 4.6 ± 2.1

Liver stiffness status based on LSM2 significant/not significant 403/2949

Demographics

Sex male/female 1584/1768

Age years 57 ± 13

Weight kg 83 ± 25

Alcohol consumption in the last 3 months units/week 6 ± 15

BMI 27.3 ± 7

METS points 0/1/2/3/4/5 336/753/824/608/448/383

Diabetes no/yes 3023/329

Mid-upper arm circumference cm 30 ± 5

Serum markers

ALT U/L 26 ± 16

AST U/L 25 ± 11

ALP g/L 69 ± 28

GGT​ U/L 29 ± 36

ALB g/L 45 ± 4

INR 1.0 ± 0.1

Bilirubine µmol/L 8 ± 6

Platelets 10^9/L 242 ± 75

Hb mmol/L 8.8 ± 1.0

MCV fL 90 ± 5

Leukocytes 10^9/L 6.0 ± 2.3

CRP mg/L 1.5 ± 2.7

Ferritin µg/L 145 ± 173

Sodium mmol/L 140 ± 3

Cholesterol mmol/L 5.0 ± 1.4

Triglycerides mmol/L 1.1 ± 0.8

Elevated triglycerides no/yes 2208/1144

HDL mmol/L 1.5 ± 0.6

Low HDL cholesterol no/yes 2397/955

HbA1c mmol/mol 36 ± 6

GLC mmol/L 5.7 ± 0.8

GLCmean mmol/L 6.1 ± 0.8

IgA g/L 2.2 ± 1.4

IgG g/L 10.1 ± 2.9

IgM g/L 0.86 ± 0.64

MELD 6 ± 1

Biopsy Units or levels Summary data (N = 463)

Biopsy-assessed fibrosis stage F0/F1/F2/F3/F4 41/168/139/50/65
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S, M, L and 4XL, respectively) (Table 2). Diagnostic performance measures for the prediction of significant liver 
stiffness (LSM > 8 kPa) in the hold-out data set, for each subpopulation (i.e. subjects at risk of NAFLD, subjects 
at risk of alcohol-related liver disease, and subjects randomly selected from the general population) is shown in 
Table 3.

The AUC in the hold-out dataset, of univariate logistic models using standard indices as predictors was 
0.70 (95%CI: 0.60–0.80, p < 0.001) (for FIB-4), 0.60 (95%CI: 0.49–0.71, p < 0.001) (for Forns) and 0.74 (95%CI: 
0.65–0.83, p < 0.001) (for APRI), showing no variability among repetitions. The AUC of multivariate models using 
all three indices as predictors, ranged from 0.75 (0.65–0.84) (repetition 2) to 0.77 (0.67–0.86) (repetition 3), while 
the independent association between indices and significant LSM was pFIB-4 < 0.001, pForns < 0.05 and pAPRI < 0.001.

The diagnostic performance for the detection of significant liver stiffness (> 8 kPa) in the hold-out data set, 
of all LiverAID models (AUC​LiverAID_XXS = 0.86, AUC​LiverAID_XS = 0.89, AUC​LiverAID_S = 0.91, AUC​LiverAID_M = 0.92, 
AUC​LiverAID_L = 0.92, AUC​LiverAID_4XL = 0.94) was in all cases and repetitions significantly higher than that of any 
regression model based on standard blood-based indices (AUC​FIB-4 = 0.70, AUC​Forns = 0.60, AUC​APRI = 0.74 and 
AUC​FIB-4+Frons+APRI = 0.76) (p < 0.01) (Fig. 3 and Table 4). When comparing LiverAID models among themselves, 
the difference in classification performance between LiverAID XXS and XS was not statistically significantly 
(p > 0.10). Similarly, LiverAID S, M and L did not significantly differ from each other (p > 0.10). The classification 
performance of LiverAID S, M and L was, in the great majority of the cases/repetitions (93%), significantly better 
than LiverAID XXS (p < 0.05), and in most cases/repetitions, significantly better than LiverAID XS (p < 0.05), but 
this last result did not stay consistent throughout (Table 4 and Appendix). Finally, model LiverAID 4XL clearly 
outperformed XXS and XS (p < 0.05), but it showed contrasting results when compared to LiverAID S, M and L 
(p = 0.014–0.219) (Table 4 and Appendix).

Head‑to‑head comparison of LiverAID models, transient elastography and standard 
blood‑based indices in predicting significant biopsy‑assessed liver fibrosis stage (F2‑F4).  In 
the patients from the hold-out dataset that underwent a liver biopsy (N = 55), LSM (≤ 8 kPa vs. > 8 kPa) was able 
to predict biopsy fibrosis stage (F0-F1 vs. F2-F4) with a NPV = 0.91 (Table 3). Liver stiffness (≤ 8 kPa vs. > 8 kPa) 
estimated with LiverAID XXS, XS, S, M, L and 4XL was able to predict biopsy fibrosis stage (F0-F1 vs. F2-F4) 
with a NPV of 0.90, 0.79, 0.85, 0.85, 0.88 and 0.89, respectively (Table 3). In comparison, liver stiffness (≤ 8 kPa 
vs. > 8 kPa) estimated from standard blood-based indices was able to predict biopsy fibrosis stage with NPV of 
0.52, 0.76 and 0.80 (for FIB-4, Forns and APRI cut-off approach) and NPV of 0.58, 0.65, 0.71 and 0.75 (for FIB-4, 
Forns, APRI and FIB-4 + Forns + APRI logistic regression approach) (Table 2).

Discussion
Our study demonstrates that ensemble learning models that use routinely available clinical data as inputs, are 
able to appropriately detect clinically significant liver fibrosis in low-prevalence settings. In comparison to models 
using traditional regression techniques and standard blood-based indices, our strategy using ensemble learning 
demonstrated significantly better diagnostic performance.

Model selection techniques should find an optimal trade-off between the ability of the model to fit data and 
the model’s required complexity to do so. In relation to this, much emphasis has been placed in the literature on 
obtaining predictive models for liver fibrosis that are “simple”12. Strictly speaking, complexity can be separated 
into the model-complexity and the inputs-complexity dimension. Briefly, the model-complexity dimension per-
tains to how complex is the model itself, which affects, among others, the prediction time. In praxis, differences 

Table 2.   - Diagnostic performance measures evaluated using the hold-out (completely unseen) dataset. 1 Cut-
off values of FIB-4 = 1.25, Forns = 4.1 and APRI = 0.5 were used.

Type of method/model

Prediction of significant liver stiffness defined as measured liver stiffness 
(LSM) > 8 kPa (N = 335)

Prediction of significant liver fibrosis defined as 
Kleiner biopsy stage (F2 to F4) (N = 55)

Method/model AUC​ Accuracy Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV

1. Cut-off values for the stand-
ard blood-based indices1

FIB-4 – 0.6 0.71 0.58 0.25 0.91 0.55 0.11 1.00 1.00 0.52

Forns – 0.17 0.93 0.03 0.15 0.73 0.71 0.82 0.59 0.68 0.76

APRI – 0.85 0.49 0.91 0.52 0.9 0.62 0.92 0.31 0.57 0.80

2. Logistic regression using 
standard blood indices as 
predictors

FIB-4 0.7 0.71 0.64 0.73 0.31 0.91 0.63 0.27 1.00 1.00 0.58

Forns 0.6 0.86 0.27 0.96 0.57 0.88 0.69 0.57 0.81 0.76 0.65

APRI 0.74 0.77 0.6 0.8 0.36 0.91 0.69 0.75 0.63 0.68 0.71

FIB-4 + Forns + APRI 0.76 0.74 0.66 0.76 0.33 0.92 0.63 0.87 0.40 0.59 0.75

3. Ensemble learning models

LiverAID XXS 0.86 0.52 0.95 0.44 0.22 0.98 0.65 0.96 0.33 0.60 0.90

LiverAID XS 0.89 0.56 0.95 0.49 0.24 0.98 0.56 0.96 0.16 0.54 0.79

LiverAID S 0.91 0.68 0.92 0.64 0.3 0.98 0.61 0.96 0.26 0.57 0.85

LiverAID M 0.92 0.69 0.9 0.66 0.31 0.98 0.61 0.96 0.26 0.57 0.85

LiverAID L 0.92 0.69 0.92 0.65 0.31 0.98 0.61 0.98 0.22 0.57 0.88

LiverAID 4XL 0.94 0.74 0.94 0.71 0.35 0.99 0.62 0.97 0.25 0.57 0.89

4. Transient elastography LSM – – – – – – 0.84 0.93 0.74 0.79 0.91
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in prediction time are inconsequential, because with the current computational power of personal computers and 
the availability of cloud computing, the result on the predicted status of fibrosis for each new patient can be in 
all approaches considered in this article, available for the clinician at the click of a button. The inputs-complexity 
dimension pertains to how many input parameters on each new patient are required by the model to make a 
prediction, and how costly and feasible is obtaining information on these specific parameters in clinical settings. 
All our LiverAID models involve objective and readily available laboratory variables and non-invasive clinical 
information; and none of them require information from invasive or resource intensive procedures. In this regard, 
they are therefore more advantageous than other methods such as ELF or TE. The question remains now how 
do the LiverAID models compare to each other and to traditional blood-based indices. Whilst acknowledging 
the very high performance of LiverAID 4XL (AUC = 0.94), this comprehensive model will not be, most likely, 

Table 3.   - Diagnostic performance measures for the prediction of significant liver stiffness defined as 
measured liver stiffness (LSM) > 8 kPa, evaluated using the hold-out (completely unseen) dataset, for each 
subpopulation: subjects at risk of NAFLD, subjects at risk of alcohol-related liver disease (ALD), and subjects 
randomly selected from the general population.

Method/model Accuracy Sensitivity Specificity PPV NPV

NAFLD (N = 136)

1. Cut-off values for the standard blood-based indices1

FIB-4 0.82 0.00 1.00 – 0.82

Forns 0.22 0.91 0.06 0.18 0.75

APRI 0.86 0.48 0.95 0.67 0.89

2. Logistic regression using standard blood indices as 
predictors

FIB-4 0.74 0.52 0.78 0.35 0.88

Forns 0.83 0.23 0.97 0.63 0.85

APRI 0.76 0.48 0.83 0.38 0.88

FIB-4 + Forns + APRI 0.76 0.64 0.78 0.39 0.91

3. Ensemble learning models

LiverAID XXS 0.61 0.96 0.54 0.30 0.98

LiverAID XS 0.53 0.93 0.45 0.26 0.97

LiverAID S 0.63 0.94 0.56 0.31 0.98

LiverAID M 0.63 0.94 0.56 0.31 0.98

LiverAID L 0.63 0.93 0.57 0.31 0.98

LiverAID 4XL 0.68 0.92 0.62 0.34 0.98

ALD (N = 114)

1. Cut-off values for the standard blood-based indices1

FIB-4 0.82 0.15 1.00 1.00 0.81

Forns 0.18 0.94 0.01 0.18 0.50

APRI 0.79 0.55 0.85 0.50 0.88

2. Logistic regression using standard blood indices as 
predictors

FIB-4 0.67 0.75 0.65 0.37 0.91

Forns 0.84 0.39 0.94 0.58 0.87

APRI 0.69 0.70 0.69 0.38 0.89

FIB-4 + Forns + APRI 0.67 0.67 0.67 0.33 0.89

3. Ensemble learning models

LiverAID XXS 0.59 0.90 0.52 0.30 0.96

LiverAID XS 0.51 0.99 0.40 0.27 0.99

LiverAID S 0.64 0.90 0.58 0.33 0.96

LiverAID M 0.64 0.90 0.58 0.33 0.96

LiverAID L 0.64 0.93 0.57 0.33 0.98

LiverAID 4XL 0.68 0.99 0.60 0.36 1.00

General population (N = 85)

1. Cut-off values for the standard blood-based indices1

FIB-4 0.94 0.00 1.00 - 0.94

Forns 0.07 1.00 0.01 0.05 1.00

APRI 0.90 0.25 0.94 0.20 0.96

2. Logistic regression using standard blood indices as 
predictors

FIB-4 0.74 0.75 0.74 0.14 0.98

Forns 0.93 0.00 0.99 0.00 0.95

APRI 0.88 0.75 0.88 0.27 0.98

FIB-4 + Forns + APRI 0.79 0.68 0.79 0.22 0.96

3. Ensemble learning models

LiverAID XXS 0.84 0.75 0.84 0.19 0.99

LiverAID XS 0.68 0.90 0.67 0.12 0.99

LiverAID S 0.87 0.75 0.88 0.23 0.99

LiverAID M 0.87 0.75 0.88 0.23 0.99

LiverAID L 0.86 0.75 0.87 0.22 0.99

LiverAID 4XL 0.95 0.75 0.96 0.47 0.99
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the “method of choice”, since it requires for the clinician to obtain and entry into the model a large amount of 
non-automated information from each investigated patient, which is very time-consuming, and entails a high 
risk of introducing operator errors.

Figure 3.   Receiver operating characteristic (ROC) curves for the prediction of clinically significant liver 
stiffness (> 8 kPa) in the hold-out dataset, repetition 1 to 5 respectively (n = 335) of LiverAID models (LiverAID 
XXS, XS, S, M, L, 4XL) and logistic regressions using standard blood-based indices of liver fibrosis as predictors 
(univariate FIB-4, Forns, APRI and multivariate FIB-4 + Forns + APRI).
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Placing greater value on simplicity and usability, the remaining models (XXS to L) may then be considered. 
Models LiverAID L and M do not imply a significantly better performance compared to LiverAID S; while 
LiverAID XS did not outperform LiverAID XXS. Therefore, two models stand out as being especially efficient 
in their ability to predict significant liver stiffness: LiverAID XXS (AUC = 0.86) and LiverAID S (AUC = 0.91). 
The main advantage of LiverAID XXS is that it exclusively relies on data from 9 objective laboratory markers 
obtained from routine blood tests. This could be particularly valuable when aiming at identifying people with 
asymptomatic liver disease in the general population. No demographic or clinical information about the patient 
is required, beyond these 9 serum markers; thereby releasing resources (i.e. the cost of performing history tak-
ing and physical examination) that could be used in increasing the population undergoing laboratory testing 
for initial screening for liver fibrosis. In comparison, LiverAID S relies on only 5 serum markers, but it requires 
some basic demographic and clinical information about the patient. It should be highlighted though, that Liv-
erAID S performed significantly better than LiverAID XXS, while still affording a reasonable balance between 
the goodness of fit and number of parameters required by the model. As to FIB-4, Forns and APRI regression 
models, these require data on 2–6 parameters. However, the performance of these traditional approaches was 
also markedly inferior (AUC = 0.60–0.76, vs. AUC = 0.86–0.91, p = 0.000–0.001).

One of the most important aims of screening for liver fibrosis is to make clinical decisions about further 
diagnostic tests and possibly treatments, by excluding subjects with zero-to-little fibrosis. We address the ques-
tion of how many subjects testing negative using each of the investigated methods, do have significant liver 
stiffness, despite having negative test results. Standard blood-based indices, commonly used in clinical practice, 
performed poorly in identifying candidates at low risk of having significant liver fibrosis in that: 9–27% of patients 
with lower scores than the proposed cut-off threshold, and 8–12% of patients with a negative logistic regression 
result based on FIB-4, Forns and/or APRI as predictors; had LSM > 8 kPa. In comparison, all LiverAID models 
could achieve a NPV ≥ 0.98. With a negative result overlooking the existence of significant LSM in only ≤ 2% of 
the patients, we could focus on what the test means in patients with positive test results. In a clinical context, a 
patient with a positive LiverAID test would be referred for further investigations (e.g. TE). A patient classified 
as positive using LiverAID XXS (i.e. predicted LSM > 8 kPa) has a 22% probability of subsequently obtaining an 
actual LSM > 8 kPa and a 78% probability of obtaining LSM ≤ 8 kPa (i.e. unnecessary TE examination or over-
testing). In the case of using LiverAID S, these probabilities are 30% and 70%, respectively. Consequently, using 
LiverAID S instead of LiverAID XXS, translate into an estimated reduction of 8% in the number of patients 
undergoing unnecessary transient elastography tests. The decision on using LiverAID S vs. LiverAID XXS may 
have thus economic implications for the healthcare system. These are currently undetermined since performing 
cost–effectiveness analyses of alternative health assessment strategies is beyond the scope of this paper. Finally, we 
evaluated the performance across different clinically relevant subgroups, i.e. subjects at risk of NAFLD, subjects at 
risk of alcohol-related liver disease (ALD), and subjects randomly selected from the general population. LiverAID 
models showed an adequate performance in each of the three subgroups. In LiverAID XXS and LiverAID S, the 
NPV’s were 0.98, 0.96 and 0.99, for NAFLD, ALD and general population subgroups, respectively. In LiverAID 
XXS, the PPV’s were 0.30, 0.30 and 0.19, for NAFLD, ALD and general population subgroups, respectively; while 
in LiverAID S, the PPV’s were 0.31, 0.33 and 0.23.

It is well established that LSM can be used as a surrogate of liver fibrosis, and that TE is a sensitive tool to be 
used, as a triage test before biopsy, for identifying patients that could obviate biopsy. If the NPV of LiverAID 
models in predicting significant biopsy-assessed liver fibrosis was sufficiently high in comparison with the NPV 
of TE, then in clinical practice a negative LiverAID result (instead of a negative TE result), could be used to avoid 
the need for liver biopsy. In the primary care clinical setting, which is the relevant implementation context for the 
LiverAID models, a slightly lower NPV of LiverAID, compared to TE would also be clinically acceptable. This is 
because in primary care, a clinical decision must be made as of whether a patient should be referred for further 
examinations or not (unlike in specialized departments, where often a decision has to be made regarding the 
need of performing a liver biopsy). Our study showed that, in the subgroup of patients who underwent a liver 

Table 4.   - P-values for the comparison of AUC between LiverAID models and standard blood-based indices 
in predicting significant liver stiffness (LSM > 8 kPa). Ranges indicate the minimum and maximum P-values 
from the repeated models (repetitions 1 to 5). The results for each repetition can be found in Appendix.

FIB-4 Forns APRI FIB-4 + Forns + APRI LiverAIDXXS LiverAIDXS LiverAIDS LiverAIDM LiverAIDL LiverAID 4XL

AUC​ 0.70 0.60 0.74 0.76 0.86 0.89 0.91 0.92 0.92 0.94

FIB-4 –

Forns 0.987 –

APRI 0.867 0.998 –

FIB-4 + Forns + APRI 0.021 0.003 0.173 –

LiverAID XXS 0.000 0.000 0.000–0.001 0.002–0.008 –

LiverAID XS 0.000 0.000 0.000–0.001 0.001–0.008 0.065–0.430 –

LiverAID S 0.000 0.000 0.000 0.000–0.001 0.005–0.031 0.000–0.102 –

LiverAID M 0.000 0.000 0.000 0.000 0.001–0.016 0.003–0.132 0.300–0.485 –

LiverAID L 0.000 0.000 0.000 0.000 0.004–0.060 0.001–0.067 0.187–0.482 0.172–0.440 –

LiverAID 4XL 0.000 0.000 0.000 0.000 0.002–0.006 0.001–0.041 0.044–0.219 0.049–0.126 0.014–0.157 –
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biopsy, 9% of the patients with a negative TE result had significant biopsy-assessed liver fibrosis (F2-F4 kleiner 
stage). In comparison, 10% and 15% of the patients with a negative LiverAID XXS and S result, had a F2-F4 
kleiner stage of liver fibrosis. Therefore, LiverAID XXS and S showed a relatively good ability to reliably predict 
the absence of significant biopsy-assessed fibrosis stage (F2-F4), in patients who were assessed for suspected liver 
fibrosis using liver biopsy. We must point out that, in our study, a liver biopsy was performed when a subject had a 
LSM > 8 kPa; therefore, the biopsy subgroup cannot be considered representative of a “low prevalence population”.

One main limitation of our study is that validation was performed internally, using a random sample of the 
population of study. Although this data was not used at any stage during the model building process, further 
studies are needed to evaluate whether the models maintain their diagnostic performance in external populations. 
In the general population, the prevalence of significant liver stiffness (> 8 kPa) has been reported as 2–7.5%13,14, 
while prevalences have been reported as being 34% among patients with type 2 diabetes and 18.3% among haz-
ardous alcohol users8. The prevalence observed in our study (13%) accords with the fact that, in our cohort, the 
frequency of subjects with known risk factors for liver fibrosis is somewhat overrepresented compared to the 
general population. This is both deliberate and clinically justified, since, in clinical practice, targeting patients 
with known risk factors is a more effective screening strategy for identification of patients with asymptomatic 
chronic liver disease8. It is worth noting that in a diminished prevalence setting (i.e. general population), the 
true ability of a negative LiverAID test to rule out significant fibrosis will be increased, as well as the number of 
unnecessary TE examinations. For future research, it would be desirable to validate the LiverAID models in a 
low prevalence cohort with liver biopsy as the reference standard.

In conclusion, we present a set of AI-based models with different complexities, able to successfully predict 
clinically significant liver fibrosis, using patient data that can be available at a low cost in clinical settings. Two of 
our ensemble models stand out as being especially efficient, one requiring 9 routine serum markers, and another 
one requiring 5 routine serum markers and 8 basic demographic/clinical variables. Given the ready availability 
of the required data, along with the relatively high accuracy in separating patients’ risks, our ensemble models 
seem to be valuable and practical tools that could be used clinically for early identification of patients with 
asymptomatic chronic liver diseases in primary care.

Data Avaliability
The source data for this article cannot be made freely open access as it is considered pseudonymised data. 
Access to data can be granted via contact with the corresponding author and after approval from the Danish 
Data Protection Agency.
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